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What is “nonlinear dimensionality reduction?”

NDR Low-dimensional

High-dimensional data (Manifold Learning) embedding

« We often suspect that high-dim may actually lie on or near a
low-dim manifold (often much lower!)

It would be useful if we could reparametrize the data in terms of
this manifold, yielding a low-dim embedding

BUT - we typically don’t know the form of this manifold
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Why might this be useful?

» The variation observed in high-dimensional signals often has
much lower-dimensional explanation

64x64 pixel images parametrized by just 3
variables (pose and lighting direction)

* Discovering these modes of variation helps us understand the
underlying structure of the data and the process that generated it
- Visualization of high-dimensional data

- Machine learning and pattern recognition
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Okay, so how do we learn the embedding?

» Given high-dim data sampled from an unknown low-dim
manifold, how can we automatically recover a good embedding?

A Global Geometric Framework for Nonlinear
Dimensionality Reduction

Tenenbaum, de Silva and Langford
Science (Vol. 290, Dec 2000, 2319-2323)

Nonlinear Dimensionality Reduction by
Locally Linear Embedding

Roweis and Saul
Science (Vol. 290, Dec 2000, 2323-2327)
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Outline

* Linear subspace embedding

- Principal Components Analysis (PCA)
- Metric Multidimensional Scaling (MDS)

* Non-linear manifold learning

- Isomap (Tenenbaum et al.)

- Locally Linear Embedding (Roweis et al.)
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An excellent tutorial ...

Spectral Methods for
Dimensionality Reduction

Prof. Lawrence Saul

Dept of Computer & Information Science
University of Pennsylvania

NIPS*05 Tutorial, December 5, 2005

nEn N4+{1] Neural Information
7 ¥ .
oae el ” l X -1 Processing Systems
UNIVERSITY of PENNSYLVANIA

P)7S| Conference

.. from which I have borrowed liberally! Thanks Lawrence!
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Background - Linear Subspace Embedding
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Linear subspaces

« We may often assume that our high-dim data lies on/near a
linear subspace
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Linear subspaces

« We may often assume that our high-dim data lies on/near a
linear subspace
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* In this case, well-known, stable tools exist for determining the
parameters of this subspace

- Principal Components Analysis
- Metric Multidimensional Scaling

- Among the most widely-used algorithms in engineering!
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Notation

* We have a quantity N of D-dimensional data points x
* We seek to map x to a set of d-dimensional points y

* Nislargeandd << D
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Principal Components Analysis (PCA)

* Project data onto an orthonormal basis, chosen so as to
maximize the variance of the projected data

 Choose subspace as the d-dimensional hyper-plane spanned by
directions of maximum variance
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Principal Components Analysis (PCA)

» First, we center the data to have zero empirical mean

Y X% =0

[

 Then we determine an orthonormal linear projection
y; = Px,

* ... s0 as to maximize the projected variance
Lo ] L2
var(y) = ~ > | P% |
n-;
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Principal Components Analysis (PCA)

Projected variance is given by

var(y) = Tr(PCP") with C=n" Z* X!

where C is the DxD data covariance matrix, with eigen-value
decomposition

C = ZA**T with A, >--2 21, >0

The projected variance is maximized when
d

P=)¢ée,
=1
* i.e. projecting into the sub-space spanned by the eigenvectors
corresponding to the largest eigenvalues
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Principal Components Analysis (PCA)

* The intrinsic dimensionality of the subspace may be estimated as
the number of significantly large eigenvalues

Eigenvalue

1 2 3 4 5 6 7 8 9 10
Subspace dimension
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PCA Example : Eigenfaces

» Sirovich and Kirby (JOSA ‘87) pioneered application of PCA to
model the variation observed in face images

+ High-dim (e.g. 128x128 pixel) face images may be modeled by
just 50-100 principal components

PCA applied to 7562

i 144 .
Mean” face face images

Top 15 most significant
principal components
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Multidimensional Scaling (MDS)

* An alternative approach to PCA based on preserving pairwise
distances

0 A, Ay Ay &
A12 O A23 A24 N y3
AIB A23 0 A34 Y2 >

Yy
_A14 A24 A34 0 _ 4

Given n(n — 1)/2 pairwise distances d;; = ||X; — Xj||, find a
low-dimensional embedding X — y such that ||y; —y;|| = d;;.
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Multidimensional Scaling (MDS)

 Given centered mean-zero data X, we can express the dot
products G;; = <X; X;> in terms of pairwise distances d;

1 (1
Gij = 5 E ;(dgk + d d2 - 5 Z d (n.b. useful lemmat)

* We then seek new vectors y; so as to minimize the error function

err(y) = Z (Gij — ?Jz‘Tyj)2

iJ

+ Matrix G, consisting of all possible dot products <i,j> is known

as a Gram matrix
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Multidimensional Scaling (MDS)

* We aim to approximate G

2
err(y) = Z (Gij — ?J;ryg)
]
* Again using the eigen-decomposition of the Gram matrix

n

G =) AV, v, with 4, 221,20

« We immediately see that the optimal approximation of G is
given by an outer-product of the most significant eigenvectors

Yoi = V AaVai for a=1.2,....d
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PCA vs. MDS

 The methods are in some sense “dual” to each other

- In PCA, we compute the DxD covariance matrix
| N D
Cij — E Zk:fb‘q;kmjk -XI - B DxD
- In MDS, we compute the NxN Gram matrix

D N
Gij = T; 0 T IX-:. NxN

» For Euclidean distances dj; in MDS, the two methods yield the
same embedding results (up to an arbitrary rotation)
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PCA vs. MDS

+ Both PCA and MDS have similar strengths

- polynomial time algorithms (non-iterative)
- no local optima

- no parameters to set

- can estimate subspace dimension

- very well understood!

« BUT - Limited to linear projections

- How can we generalize to arbitrary manifolds?
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Nonlinear Dimensionality Reduction

Method 1: Isometric Feature Mapping (IsoMap)

Spring Semester 2019 CS-570 Statistical Signal Processing
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Tenenbaum et al.
(Science, Dec "00)

Isometric Feature Mapping (IsoMap)

* Recall that MDS seeks an embedding that preserves pairwise
distances between data points

« BUT - Geodesic distances measured on the manifold may be
longer than the corresponding Euclidean straight-line distance dj;
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IsoMap

* Idea : Use geodesic rather than Euclidean distances in MDS

 But - How can we compute geodesics without knowing the
manifold?

Spring Semester 2019 CS-570 Statistical Signal Processing
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IsoMap

» Idea : Use geodesic rather than Euclidean distances in MDS

 But - How can we compute geodesics without knowing the
manifold?

 Answer : Build an adjacency graph and approximate geodesic
distances by shortest-paths through the graph

Spring Semester 2019 CS-570 Statistical Signal Processing 25



IsoMap

Step 1 - Build the adjacency graph over high-dim points X

Neighborhood selection

- Choice 1: k-nearest neighbors

- Choice 2: neighbors within a fixed radius (epsilon-ball)

Assume graph is fully connected

- no isolated islands of points

Assume graph neighborhoods reflect manifold neighborhoods

L wFem e,
-t i £ kL
ST T

- no “short-cuts” between distant points on manifold | }#

- sensitive to choice of neighborhood size
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IsoMap

+ Step 2 - Compute approximate geodesics
* Weight graph edges by inter-point distances

« Apply Dijkstra’s all-pairs shortest-paths algorithm O(N2lgN+N2k)
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IsoMap

« Step 3 : Apply MDS to geodesic distances

* Top d eigenvectors of Gram matrix give the embedded, d-
dimensional points

« Dimensionality of manifold may be estimated by number of
significant eigenvalues, just as in PCA/MDS

N = 1024 points
“uw k=12 nearest neighbours

-----
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IsoMap examples

Faces - varying pose and illumination

* 3 true degrees of freedom (dof) in total

- 64x64 pixel images
- N =698
_ k=6

Eigenvalues
0.7

0.6

0.5 e [somap
0.4 A MDS

0.3
0.2
0.1

1 2 3 456 7 8 9 10
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IsoMap examples

Faces - varying pose and illumination

3 true degrees of freedom (dof) in total

IsoMap recovers the low-

dimensional structure in the data

Coordinates in the embedding

correspond to meaningful modes

of variation in the image
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IsoMap examples

« Hand images - varying wrist rotation and finger extension

F
- 64x64 pixel images i
- N = 2000 5
- k=6 B

E
=B

Trajectories in the embedding
correspond to meaningful E
variations in the image EE

- -
Wi roizdion
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IsoMap examples

* Interpolations along “straight” lines in the embedding space
yield realistic, though highly nonlinear, transitions in the image
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Scaling-up: Landmark Isomap

Problem
* Isomap does not scale well

» For large N, all-pairs shortest paths computation is too expensive
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Scaling-up: Landmark Isomap

Problem
* Isomap does not scale well

» For large N, all-pairs shortest paths computation is too expensive
Solution
« Compute embedding using a subset of the data (landmarks)

» Embed non-landmarks by convex triangulation

A A o o
O Landmark O O

O Non-landmark o Ty o B . o

A 4 o
o

\ 4

Original data space Embedding space
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IsoMap strengths

» Strengths inherited from MDS

Polynomial time algorithm

No local optima

Non-iterative

Automatic intrinsic dimensionality estimate
» Isomap adds a single heuristic parameter

- graph neighbourhood size k

 Guaranteed asymptotic convergence

- For data living on a convex submanifold of Euclidean space, and given
large enough sample N, Isomap is guaranteed to recover the true
manifold, up to a rotation and translation.
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IsoMap weaknesses

» Sensitive to “short-cuts” due to k being too large

 Does not scale well to very large N

- NxN dense eigenvector problem is expensive

 Convexity assumption —

- Cannot handle manifolds with “holes”

L wi % o o®

IsoMap embedding e.g. periodic motion
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Nonlinear Dimensionality Reduction

Method 2: Locally Linear Embedding

Spring Semester 2019 CS-570 Statistical Signal Processing
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Locally Linear Embedding (LLE) Roweis & Saul,

Science, Dec ‘00

“Think locally, fit globally!” - an alternative to Isomap

 LLE aims to preserve local manifold geometry in its

embedding

Idea

 Assume manifold is locally linear

- We expect each D-dim data point to lie on or near a

locally linear patch of the manifold 0
. . . . O e O
* Characterize each point x; as a convex linear © »
° . ° . . |- .
combination of its k-nearest neighbors x; L Xy W K

 Seek an embedding that preserves these weights /1
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Locally Linear Embedding

» Step 1: Compute k-nearest neighbors for each point x;

- Same as in [somap

* Step 2: Compute weights Wij; that best reconstruct x; as a convex
sum of its neighbors X;

, © e ®
) . . 2 o) 5 @
arg min ®(W) = E T; — E Wi Z; . \ N

) — -

v ‘ JEN; > Xy Wi Xk

.‘- ‘. .
subject to E Wi =1 WX
j 0o ® er VM el

- This is easily solved using a Lagrange multiplier
- Note that local weights are invariant to translation, rotation and scale

- Hence weights should be preserved under a well-behaved embedding
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Locally Linear Embedding

» Step 3: Choose embedded coordinates y; that minimize
reconstruction error using previously computed weights Wj;

arg min ©(y) Z szyj
y JEN;

subject to Z Yy, =0 (zero mean)

1 : :
— S yuy! =1;  (unit covariance)

- Since the embedding is only defined up to an arbitrary translation and
scale, the constraints serve to make the problem well-posed

Spring Semester 2019 CS-570 Statistical Signal Processing 40



Locally Linear Embedding

The result is given by the eigenvectors of the matrix Q
corresponding to the d+1 smallest eigenvalues, where

Q=(I1-W)"(I-W)

The bottom eigenvector is the vector [1 1 1 1]T, an exact null-
vector corresponding to a free translation mode.

Discarding it imposes the zero-mean constraint.

The remaining d eigenvectors give the embedding

Note : W and hence Q is very sparse (compare to IsoMap G)

Ffficient algorithms exist for large, sparse eigenvector problems

Spring Semester 2019 CS-570 Statistical Signal Processing
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LLE summary

1. Compute the neighbors
of each data point, X;.

2. Compute the weights
W;; that best recon-
struct each data point
)?i from its neighbors,
minimizing the cost in
eq. (1) by constrained
linear fits.

3. Compute the vectors )_’;
best reconstructed by
the weights W;;, min-
imizing the quadratic
form in eq. (2) by its
bottom nonzero eigen-
vectors.

Spring Semester 2019
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LLE examples

(A) (B) ©)

N=1000
inputs

k=8
nearest
neighbors

D=3
d=2
dimensions
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PCA vs LLE example

d=2 PCA embedding d=2 LLE embedding

* Input: 30x30 images of a translating face (N=961)
» PCA fails to recover a meaningful 2-d embedding

* LLE discovers the 2 translational degrees of freedom in the input
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L LE example - Face variations

- 20x28 pixel images
- N=1965

- k=12

- d=2

¥ =y 2ol =sl ae] =l o sl wul @ul sl ael nel o v »
R T s Tl T 0 ) 0 U
 The 2-d LLE embedding coordinates correspond roughly to
variations in pose and expression

b

» The trajectory (red) corresponds to a realistic facial transition

(bottom row)
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LLE example - Lips images

- 256x256 pixel images
- N=15960
- k=24

- d=2

» Trajectories in the 2-d embedding correspond to smooth
variations in the mouth configuration

 Note: LLE easily handles the large problem size (N=15960)
thanks to sparse weights matrix

Spring Semester 2019 CS-570 Statistical Signal Processing 46



LLE example - a pattern classifier

- Recognition of hand-written digits

y2

- 16x16 pixel images (USPS dataset)
- N=11000

- k=2? (author doesn’t say)

- d=8

y5

y3 y3 yl

» Most digit classes are easily separable in just the first two
embedding dimensions

» A classifier would be easy to construct and visualize

Spring Semester 2019 CS-570 Statistical Signal Processing
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LLE with pairwise distances

« What if we only have pairwise distances d(X;,X;) between data
points, as was the case with MDS and IsoMap?

» We can use the same trick for expressing dot products in terms
of distances when computing the LLE weights W;;

* The neighborhood covariance may be written as

1

Dy=3, Dy,
Dy = ij Djk
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LLE with pairwise distances
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- Input: Histograms of occurrence of 5000 words in 31000 encyclopedia articles

- Distance metric: dot-products between unit-normalized histograms

- k=20

- LLE recovers a continuous semantic embedding
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LLE: choosing neighborhood size k

X
ib,q*..
4

ot

ot
L

2 ‘!'1."'-'-.‘4'5"'.1:t.-I.JI
0
%
et

" ‘i?;-.:
v “‘\.5-33,’_}

Y
.ii :‘gj

Ry
3 ﬁ'.{
&
e o
X

~r
]
-
=

et

! - Y
- [ -
- s ’ P g
| R TRy ¢ et
- 1 . ‘1: g ﬁ‘n %:"': vedl
s & - \!?:'.‘. vieon
] 3 h Foopl ol 2
IRSRT B ROl

Y T ‘g iv
Ty -.'d;-"; '..::i' Y
: 1:.“‘??3??;"{'4;":1

3-d S-manifold
:;'; ;.i:: ':E_&ii.": '::..n'; ::f",,'::;_j
0_"_""3-._\'--'.-':_ -z:: ‘i."-r
AV g

K =60

* Neighborhood size k is varied in 2-d embedding of S-manifold
* k too low - no meaningful structure is recovered

* k too high - S is squashed onto a plane, ordering not preserved
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| LE: Non-convex manifolds

ISOMAP LLE

e LLE handles non-convex manifolds (those with holes) a little
better than IsoMap

* Not perfect - we'd prefer this particular 2d-2d embedding to be a

simple isometry!
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LLE strengths/weaknesses

« Similar strengths to [soMap

Graph-base, eigenvector method
Polynomial time algorithm

No local optima

Non-iterative

Single heuristic parameter (neighbourhood size k)

« PLUS - Better handling of non-convex manifolds

« BUT - some additional weaknesses

- Also sensitive to “short-cuts”

No asymptotic guarantees

No way to estimate intrinsic manifold dimension

Spring Semester 2019 CS-570 Statistical Signal Processing
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IsoMap vs. LLE

IsoMap LLE
« Computes top d eigenvectors of a | « Computes bottom d+1 eigenvectors
dense NxN matrix of a sparse NxN matrix
* Preserves distances * Preserves local linear geometry
« Asymptotic guarantee of finding  Copes with “holes” rather better
true manifold

Major “selling point” for LLE :

 LLE avoids the need to compute a dense, all-pair shortest distance matrix
* The LLE eigenvector problem is extremely sparse

* Far more efficient in terms of both time and storage requirements
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Laplacian Eigenmaps

* Problem: Given a set (X4, X, ..., Xi ) of k points in R, find a set of
points (Y4, Y,...,Yk ) in RM(m << |) such that y;represents x.

* Steps
—Build the adjacency graph
—Choose the weights for edges in the graph
—Eigen-decomposition of the graph Laplacian
—Form the low-dimensional embedding



Laplacian Eigenmaps-Algorithm

Step 1: Construct the graph
—Construct the adjacency graph G by connecting neighboring
nodes (i, )
Neighbors selection
—€E-neighborhoods
—Adv: Geomnetrically motivated
—Disadyv: Disconnected graph
—n nearest neighbors
—Adv: Easier to choose, no disconnected graph
—Disadyv: Less geometricall motivated

* Step 2: Choose the weights
* Simple-minded: 1 if connected, 0 otherwise

%112

* Heat Kernel: w,--"" if connected, 0 otherwise



Laplacian Eigenmaps-Algorithm

* Step 3: Eigenmaps
— Construct Laplacian matrix
— Construct diagonal weight matrix D from weight
matrix. D; = 2,W;;
— Construct Laplacian matrix L = D-W

— Laplacian is a symmetric, positive semi-definite
matrix

— Compute eigenvalues and eigenvectors of the
generalized eigenvector problem
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Laplacian Eigenmaps-Algorithm
e Step 3: Eigenmaps

Lf = ADf

— Let, f,, fy, ..., f,_, be the solutions ordered according
to increasing eigenvalues

Lf, = A Df,
Lf, = \,Df,

Lfi 1 = Ao Dfy 4
0=Ay<=A;<=.. <= A,

— We leave out eigenvector f,. Take the next m

eigenvectors to construct m-dimensional
embedding (f(i), ..., f,(i))

Spring Semester 2019 CS-570 Statistical Signal Processing
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Laplacian Eigenmaps-Justification

* Consider the problem of mapping weighted graph G
Into a line so that the connected nodes stay as close
as possible

* Lety=(y,Vy, ..,V,) besuchamap
* Criterion for good map is to minimize 3,(y;-y;)*W;
Which turns out to be
1/2 3(yi-y;)*Wij = y'Ly
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Laplacian Eigenmaps-Justification

* Minimization problem
argmin y’ Ly
Y
v Dy=1
* The constraint removes arbitrary scaling factor

* The vector y that minimizes the objective function is
given by minimum eigenvalue solution to the
generalized eigenvalue problem

Ly = ADy

* 1is an eigenvector corresponding to eigenvalue 0.
* To eliminate this trivial solution: Constraint y'D1 =0
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Sprin

Laplacian Eigenmaps-Justification

How to find the embedding into m-dimensional
space?
The embeddingisY=[y, Y, .. Y]
Objective function:
minimize 3, | [y = yU| [2W; = tr(YTLY) i.e.

argmin tr(YTLY)

YTDY=I
Solution is provided by the matrix of eigenvectors
corresponding to the lowest eigenvalues of the
generalized eigenvalue problem

Ly = ADy
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Laplacian Eigenmaps

* So each eigenvector is a function from nodes toR in
a way that "close by" points are assigned "close by"
values.

* The eigenvalue of each eigenfunction gives a
measure of how "close by" are the values of close by
points

* By using the first m eigenfunctions for determining
our m-dimensions we have our solution.
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LLE and Laplacian Eigenmap

* LLE is connected with Laplacian Eigenmap

* LLE minimizes y'(I-W)'(I-W)y which reduces to
finding eigenvectors of (I-W)'(I-W)

* They show that finding eigenvectors of (I-W)"(I-W)

can be re-interpreted as finding eigenvectors of
iterated Laplacian L2.

Spring Semester 2019 CS-570 Statistical Signal Processing

62



Random Projections

» Based on the Johnson-Lindenstrauss lemma:
> For:

> 0< e <1/2,
» any (sufficiently large) set $'of M points in R,
>k = O(2nM)
» There exists a linear map f:$ >R, such that
> (1- €) D(S,T) < D(f(S),f(T)) < (1+ €)D(S,T) forS,Tin §
» Random projection is good with constant probability



Random Projection: Application

> Set k = O(g4InM)
» Select k random n-dimensional vectors

> (an approach is to select k gaussian distributed vectors with
variance 0 and mean value 1: N(1,0) )

» Project the original points into the k vectors.

» The resulting k-dimensional space approximately
preserves the distances with high probability

» Monte-Carlo algorithm: we do not know if correct



Random Projection

> A very useful technique,

» Especially when used in conjunction with another technique (for
example SVD)

» Use Random projection to reduce the dimensionality from thousands
to hundred, then apply SVD to reduce dimensionality farther



